侵权投诉
搜索
更多>> 热门搜索:
订阅
纠错
加入自媒体

分析:中国市场大数据对存储的需求

2014-05-08 01:01
seele_jin
关注

  这表明在大数据时代,在数据量飞速增长的情况下,企业的存储容量面临的压力最大,而应用的多元化和IT的分层管理,带来了系统IT资源配置和管理的复杂;要满足如此海量数据和多种应用的需求,企业的存储采购和运营成本也居高不下;而多个应用的同时运行,则对系统的并行处理能力提出了更高要求;非结构化数据的大数据分析则进一步反映了企业数据类型的多样性和复杂性。因此,为了满足大数据时代的IT需求,企业需要大容量、高性能、保证数据生命周期高性价比的存储来满足大数据存储、数据保护和业务连续性需求。

  戴尔流动数据特色

  针对上述大数据时代中国用户普遍遇到的存储挑战,以及用户对于新型存储的需求,分析师认为,戴尔流动数据架构可以简单快捷的实现存储容量和性能的升级扩展;横向扩展可以跨不同节点扩展,保证了在容量扩展时性能不会衰减,以及容量和性能的独立升级线性扩展;同时跨不同节点实现了无断代技术升级,避免了叉车式断代升级带来的管理难度和对业务连续性的影响,确保了存储生命周期的高可扩展性。此外,戴尔通过一个“智能”(数据块级智能)和三个“自动化”(数据分类自动化、映射自动化、迁移自动化)、流动数据的分层结合、不同RAID级别和存储层,满足不同工作负载对高可用、高性能和容量的需求,以最微粒化的维度提高大数据分析过程中的资源利用率。戴尔流动数据架构还结合一系列的存储容量优化技术(自动精简、数据压缩和重复数据删除),大大加少了资源浪费。其集群、闪存技术(SLC和MLC)和固态盘分层技术的结合,有效提高了IOPS,降低了时间延迟,实现了大数据对OLTP和OLAP的高要求,以及存储容量可扩展和资源优化的目的。

  应用场景分析

  1.SQL应用

  英国某卫生行业云计算提供商对于客户各种需求的满足,加大了对数据存储容量和性能、大数据分析频率和速度的要求。该提供商结合MicrosoftSQLServer2012Enterprise软件和商业智能工具,通过混合云平台,为各种医疗机构和医生提供用户可选择的商业智能分析服务。大数据分析过程中,存储主要面临的挑战是扩展和存储利用率以及近实时分析性能。

  戴尔流动数据架构的横向扩展特性,以及引入闪存带来的高性能和分层技术可以帮助医疗机构在实现存储资源优化的同时,满足大数据分析的性能需求。

  2.SAPHANA应用

  美国某电信供应商面临的问题是,如何将不同来源的海量数据进行大数据近实时分析,通过多种渠道为2100万用户提供所需服务。2012年,该公司部署了SAPHANA,对多种维度的数据进行大数据近实时和实时分析。快速部署SAPHANA,以及SAPHANA分析平台对存储容量、存储性能、数据高可用性,以及数据保护的需求对传统存储带来挑战。

  戴尔不仅提供了SAPHANA认证整体解决方案,其闪存优化大幅度提高了一层存储的性能,并且流动数据架构的细粒度分层都保证了最大限度降低了SAPHANA部署、调优和管理所需的资源。

  3.Hadoop应用

  SecureWorks作为信息安全服务商,帮助从政府到企业的各种用户通过Web应用、网络、日志等扫描及全天候安全监控,提高信息安全性。随着客户量的增加,数据量快速攀升,如何保证存储高可扩展性、数据高可用性,以及存储动态资源配置能力,是选择存储的关键。

  戴尔Crowbar结合ClouderaHadoop方案,简化了Hadoop的方案整合,提高了存储性能,优化了存储资源利用率,降低了业务风险。为从IT架构管理,向IT服务交付提供了标准化、规范化、自动化的IT管理平台。

<上一页  1  2  3  下一页>  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号